数学知识――有趣的21
作者: 来源: 上传时间:2005-08-30
我们知道,整数被2,3,4,5,8,9或11整除的特点易掌握,什么样的数能被7整除?这可是一个难题,下面,我将介绍一些关于整数被7整除的有趣而又有用的知识。
先从3×7=21谈起。
有一个道理是很明显的。如果有一个整数的末位数是1,这个数又比21大的话,我们将这个数减去21,得数(它的末位数肯定是0)如果能被7整除,先前那个数肯定也能被7整除;如果得数不能被7整除,先前那个数肯定也不能被7整除,即在这种情况下,判断得数能不能被7整除,最末位上的0可以舍去不管。
如果给定的整数的末位数不是1,而是其他数,也可以依此类推,例如给定整数末位数是6,我们可将此数减去21×6=126,也即先从该整数中去掉末位数6,再从所余数中减去6×2=12。由此我们得到一个一般原则:去掉末位数,再从剩下的数中减去去掉的末位数的2倍。
以考查15946能不能被7整除为例,去掉末位数6,再计算1594-2×6得1582,此时,如果1582能被7整除,则115946就能被7整除;如果1582不能被7整除,则15946就不能被7整除。
继续对1582用此法判断可得154,再作一次就得7,由于最后得到的是7(或7的倍数),故知15946能被7整除。
这是一种简捷可靠的判断一个整数能不能被7整除的方法,我们称它为“去一减二法”,它的意思就是前面说的:去掉末位一个数,再从剩下的数中减去去掉的数的2倍。
再举一个例子,让我们来考查841945是否能被7整除。我们将逐次用“去一减二法”。结果写出来(末位数是0时可以将0舍去)便是:841945→84184→841→82→4。故知841945不能被7整除。
实际解题时,只需心算就行了,不必将上面的式子逐个写出,解题中也可以随机应变地运用一些技巧,例如,如果一眼就看出末位两位或前两位数是14,35,56,84,91等7的倍数时,可以直接舍去,如841945→1945→184→1,立即就可以断定841945不能被7整除。在上面的心算中,我们两次舍去了84这个7的倍数。
还有一种判断整数能不能被7整除的方法,这种方法也可以用来判断整数是否能被11或13整除,由于这种方法的基础是7×11×13=1001,所以我们将它为“1001法”。
还以15946为例,我们将15946从左往右数到第一位与第四位(中间相隔两位)上的数都减去1,则得5936,实际上相当于减去10×1001,减去的是7的倍数,因此要考查15946是否能被7整除,只须考查5936是否能被7整除就行了,再从5936的第一位和第四位上都减去5,得931,则15946能不能被7整除的问题变成了考查931能不能被7整除,如果我们把大于7的数字都减去7,实际上就是要考查231是否能被7整除,这时只须用一次“去一减二法”得21,就能判定15946能被7整除了。又如,用“1001法”考查841945能不能被7整除,由于1001×841=841841,所以841945-841841=945-841=104(即多次用“1001法的结果),因此我们只须考查104是否能被7整除即可,此时用“去一减二法”得2,故知841945不能被7整除。这里要注意,因为1001=7×11×13,所以“1001法”不光能用来判断7的整除性,还可以用来判断11和13的整除性,由于104不能被11整除而能被13整除,所以我们可以判定841945不能被11整除而能被113整除。这是一个很有用的知识。
利用“1001法”进行判断时,如果位数较多(数字较长),可以先将整数从右到左每三个数一节地分开,再从右边数起按下面办法计算(下式的证明要用到“同余式”的知识,此处从略,有兴趣的读者可参看有关初等数论的书):[[]第一节]
- 相关博文:
- 有趣的饮料瓶子蓝天幼儿园阅读人气:765
- 大班科学:有趣的错觉海阔天空0107阅读人气:495
- [原创]有趣的英语手指游戏(...彩色和弦阅读人气:2804
- 一次有趣的性教育庸懒女人阅读人气:1153
- 有趣的图形精致的Bonnie阅读人气:886
- 已回答相关问题:
- [教师工作]怎样才能让数学课更有趣?心的呵护阅读人气:2937
- [教师工作]幼师学生有开设数学课的必要吗...liveagain阅读人气:1058
- [园长管理]如何提高幼儿教师的专业知识以...哈哈呵呵阅读人气:3097
- [园长管理]幼儿园冬季保育知识有哪些?阅读人气:1741
- [业务管理]有关歌唱的简单知识和技能有哪...yangjili阅读人气:2095