数学知识――有趣的21

作者:   来源:   上传时间:2005-08-30

我们知道,整数被2,3,4,5,8,911整除的特点易掌握,什么样的数能被7整除?这可是一个难题,下面,我将介绍一些关于整数被7整除的有趣而又有用的知识。


先从3×7=21谈起。


有一个道理是很明显的。如果有一个整数的末位数是1,这个数又比21大的话,我们将这个数减去21,得数(它的末位数肯定是0)如果能被7整除,先前那个数肯定也能被7整除;如果得数不能被7整除,先前那个数肯定也不能被7整除,即在这种情况下,判断得数能不能被7整除,最末位上的0可以舍去不管。


如果给定的整数的末位数不是1,而是其他数,也可以依此类推,例如给定整数末位数是6,我们可将此数减去21×6=126,也即先从该整数中去掉末位数6,再从所余数中减去6×2=12。由此我们得到一个一般原则:去掉末位数,再从剩下的数中减去去掉的末位数的2倍。


以考查15946能不能被7整除为例,去掉末位数6,再计算1594-2×61582,此时,如果1582能被7整除,则115946就能被7整除;如果1582不能被7整除,则15946就不能被7整除。


继续对1582用此法判断可得154,再作一次就得7,由于最后得到的是7(或7的倍数),故知15946能被7整除。


这是一种简捷可靠的判断一个整数能不能被7整除的方法,我们称它为“去一减二法”,它的意思就是前面说的:去掉末位一个数,再从剩下的数中减去去掉的数的2倍。


再举一个例子,让我们来考查841945是否能被7整除。我们将逐次用“去一减二法”。结果写出来(末位数是0时可以将0舍去)便是:84194584184841824。故知841945不能被7整除。


实际解题时,只需心算就行了,不必将上面的式子逐个写出,解题中也可以随机应变地运用一些技巧,例如,如果一眼就看出末位两位或前两位数是14355684917的倍数时,可以直接舍去,如84194519451841,立即就可以断定841945不能被7整除。在上面的心算中,我们两次舍去了84这个7的倍数。


还有一种判断整数能不能被7整除的方法,这种方法也可以用来判断整数是否能被1113整除,由于这种方法的基础是7×11×13=1001,所以我们将它为“1001法”。


还以15946为例,我们将15946从左往右数到第一位与第四位(中间相隔两位)上的数都减去1,则得5936,实际上相当于减去10×1001,减去的是7的倍数,因此要考查15946是否能被7整除,只须考查5936是否能被7整除就行了,再从5936的第一位和第四位上都减去5,得931,则15946能不能被7整除的问题变成了考查931能不能被7整除,如果我们把大于7的数字都减去7,实际上就是要考查231是否能被7整除,这时只须用一次“去一减二法”得21,就能判定15946能被7整除了。又如,用“1001法”考查841945能不能被7整除,由于1001×841=841841,所以841945-841841=945-841=104(即多次用“1001法的结果),因此我们只须考查104是否能被7整除即可,此时用“去一减二法”得2,故知841945不能被7整除。这里要注意,因为1001=7×11×13,所以“1001法”不光能用来判断7的整除性,还可以用来判断1113的整除性,由于104不能被11整除而能被13整除,所以我们可以判定841945不能被11整除而能被113整除。这是一个很有用的知识。


利用“1001法”进行判断时,如果位数较多(数字较长),可以先将整数从右到左每三个数一节地分开,再从右边数起按下面办法计算(下式的证明要用到“同余式”的知识,此处从略,有兴趣的读者可参看有关初等数论的书):[[]第一节]

关键词:数学知识

上一篇:身边科学――什么是黑障?

下一篇:文学知识――琼•艾肯及主要作品简介

相关文章

周排行

专题推荐

幼儿教师怎么上好公开课?
幼儿教师怎么上好公开课...
今天我上英语课!
今天我上英语课!
“马上”过年啦,赶大集去哟喂!
“马上”过年啦,赶大集...

点击上面的按钮,一分钟
成为"幼儿教师网"会员